

ARTICLE

Comparison of Serum Cortisol Levels in Athletes and Esports Athletes

Faheem Butt¹, Uzma Rafi¹, Muhammad Amir Iqbal^{2*}, Sehrish Yasmeen¹ Asia Sharif³, Farwa Liaqat²

ISSN 2816-8119

Open Access

Citation

Butt F., Rafi U., Iqbal M.A., Yasmeen S., Sharif A. & Liaqat F. (2025). Comparison of serum cortisol levels in athletes and esports athletes. *Albus Scientia*, 2025, Article ID e250630, 1-5.

DOI

<http://doi.org/10.56512/AS.2025.1.e250630>

Copyright

Copyright © 2025 [Butt et al.]. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License, (CC BY-NC) which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format for non-commercial purposes only, and only so long as Attribution is given to the creator.

Competing interests

The authors have declared that no competing interests exist.

¹Department of Zoology, Lahore Garrison University, DHA, Lahore, Pakistan

²Institute of Zoology, University of the Punjab, Q-A Campus, Lahore, 54590, Pakistan

³Department of Zoology, University of Gujrat, Pakistan

Received: 30 April 2025 | Revised: 23 Jun 2025 | Accepted: 28 Jun 2025 | Published Online: 30 Jun 2025

[*amir87zoologist@gmail.com](mailto:amir87zoologist@gmail.com)

Abstract

Background: Physically active games like soccer, basketball and cycling promote cardiovascular health, improve muscle strength and enhance overall fitness. While physically inactive games may lead to sedentary lifestyle issues like obesity, poor posture and lower metabolism if not balanced with physical activity.

Materials and Methods: The study was designed to evaluate the impact of physically active athletes and esports athletes on cortisol and blood sugar level. A total of forty subjects were recruited in the study. Out of which 20 subjects were athletes and 20 subjects were esports athletes. Serum cortisol and blood glucose were assessed by enzyme-linked immunosorbent assay (ELISA).

Results: The findings of the study showed that serum cortisol and blood glucose was significantly increased ($P < 0.001$) in esports athletes as compared to athletes with mild elevation of both systolic and diastolic blood pressure in esports athletes as compared to athletes.

Conclusion: Esports athletes have high levels of cortisol, blood glucose, with elevated systolic and diastolic blood. Sedentary lifestyle may lead cardiovascular diseases, type II diabetes, osteoporosis etc. diseases.

Key words: Athletes, Cortisol, ELISA, Esports athletes, Gamers,

Introduction

Different sports involve some degree of physical activity to play, such as body motion due to skeletal muscles that involves energy derived from ATP at cellular level (Biddle and Asare, 2011). There are three main types of sports i.e. games, exergames, and video games. The first two involves the physical activity whereas later one is more sedentary with limited to no physical activity. Exergames are technology driven activities that require a screen for the player to participate. Interactive fitness activities are often non screen-based technology driven games that require the player to use their body to play. Active learning games are technology driven activities that provide an academic focus while being physically active (Peng et al., 2013). The sports with extensive physical activities are good for health as it helps in weightloss due to muscles using stored fat for energy, strengthen bones and muscles (Donnelly et al., 2016; Khan and Hillman, 2014). On contrary video games (Esports) do not have moderate to vigorous physical activity (Boone et al., 2007) and the player have sedentary life style for most part of the day, that increases the risk of different types of health concerns like reduced muscle mass, effects on eyes due to constant exposure to the digital screen etc.

Playing video games have negative impacts on the body and mind of the player, as a young video gamer has been reported to kill his family due to his addiction of playing PubG and Free fire video games (Penko et al., 2010; Hebert et al., 2005). Playing video games in a competitive real-life situation can result in significant physiological arousal expressed by an increase in cortisol level. Video games like PUBG, Free Fire, GTA-5, Action RPG etc. significantly impact the player's behaviour, daily routine and thought process (Cauderay and Cachat, 2015). In Pakistan young people spend 15 to 20 hours/week playing video making them addict, who will feel discomfort if they don't play video game (Jones S., 2011). Current neuropsychological theories of emotion state that when the orbitofrontal and limbic regions feel a social situation as challenging or threatening, the central nucleus of the amygdala initiates a series of arousing

physiological processes that involve three neuro-endocrine systems that help prime the body for action: the hypothalamic–pituitary–adrenal axis, the sympathetic–adrenal–medullary axis, and the hypothalamic–pituitary–gonadal axis (Rolls, 2015).

The adrenocorticotrophic hormone from anterior lobe of the pituitary gland under the influence of corticotropin-releasing factor from hypothalamus, stimulates the adrenal cortex in the adrenal gland to release the cortisol, the end product of this hypothalamic–pituitary–adrenal stress response in the blood (Rolls et al., 2006). Cortisol, a stress hormone has an inhibitory effect on testosterone production, This decline in testosterone level not only affects the dominant behaviors but also reinforces those dominant behaviors (Bos et al., 2012).

Cortisol increases blood glucose level which increase the supply of glucose to brain and repair tissue. In order to maintain homeostasis in the appearance of actual or perceived stress, the human stress response has developed. Auto-regulating neuronal and hormonal systems work together with central and peripheral clocks to accomplish this goal. One important regulatory pathway in the maintenance of these homeostatic functions is the hypothalamic–pituitary–adrenal axis. This system results in the pulsatile secretion of cortisol with variations in pulse amplitude generating a circadian rhythm. Pulsatility is maintained and cortisol levels increases during acute stress. As part of the fight-or-flight response, acute raise in cortisol levels helps to promote survival of the fittest. However chronic stress reverses the positive effects, making long-term cortisol exposure maladaptive. This can result in a variety of issues, such as the metabolic syndrome, obesity, cancer, mental health issues, cardiovascular disease, and an increased risk of infection (Russell and Lightman, 2019).

The hypothalamic–pituitary–adrenocortical axis is activated during the physiological stress response, when cortisol level increase (Stajer et al., 2020). The measurement of three hormones—cortisol, testosterone, and alpha-amylase that react to both physical and psychological stress may be helpful for assessing the psycho-physiological demands of athletic competition. Thus, examining these hormones at the same time may help us better understand how sports competition specifically affects athlete's abilities, specifically stress mediated release of cortisol (Arruda et al., 2018).

A psycho-physiological stress reaction is expected from playing esports competitively. Studies have reported a link between competition; a crucial component of esports, and changes in psycho-physiological states (Leis et al., 2020).

Present study was designed for the assessment of stress biomarker, blood glucose concentration in athletes and esports athletes.

Materials and Methods

The current study was approved by the Institutional Ethical Review Committee of Lahore Garrison University (LGU). A total of 40 subjects including athletes and esports athletes were recruited from different areas of Lahore ranging from 14–25 years of age. The subjects were grouped as athletes (active player) and esports athletes (video game players).

The inclusion criteria for the study was 1–4 hours of physical activity for the athletes and 5 hours of video game play for the

esports athletes in 24 hours period. Whereas subjects with previous hormonal, hepatic, Renal and Cardiac history were excluded from the study. A uniform comprehensive questionnaire was designed to document the demographic variables for the study and informed consent was taken from the participants prior to the study.

Fasting Blood samples was drawn using CL blood collecting needle into properly labelled vacutainers (sodium fluoride tube) for blood glucose analysis and in Gel clot activator tubes for serum cortisol analysis. Sample tubes were transported to laboratory within thirty minutes to 1 hour. The sample label was verified with the questionnaire. The equipment and kits used to determine blood glucose and serum cortisol were approved by Federal Drug Agency (FDA), USA.

Blood samples were centrifuged at 3000 rpm for 5 minutes. Glucose reagent was thawed at room temperature. Subsequently, 1000 μ l reagent and 10 μ l sample was dispensed in eppendorf tube with the help of micropipette. The samples were analyzed in chemistry analyzer for quantitative assessment.

Statistical analysis

The data was analyzed through unpaired t-test using Graph pad prism version 6 software. The data is presented as Mean \pm SEM

Results

A significant increase in serum cortisol level was found in esports athletes as compared to athletes ($P < 0.0001$). Comparison of BMI in physically athletes and esports athletes' groups did not show any significant difference.

In addition, systolic blood pressure in both physically athletes and esports athletes groups presented no significant difference. Similarly, diastole blood pressure in physically athletes and esports athletes groups presented no significant variation ($P > 0.05$). The value of diastole was found to be 78.05 ± 1.41 mmHg in active group. Whereas value of diastole was found to be 81.95 ± 1.62 mmHg in inactive participants (Figure 1, Table 1).

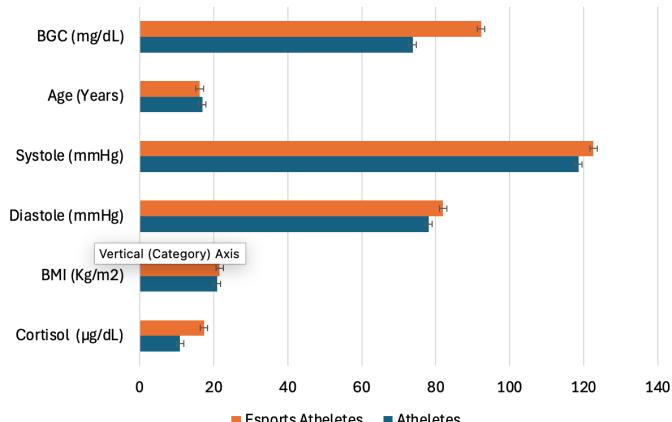


Figure 1: Presenting comparison of cortisol, Blood Pressure, Blood sugar and in athletes and esports athletes. ***Indicate Significance at $P < 0.001$. BGC: Blood Glucose Concentration

Comparison of blood glucose concentration (BGC) in physically athletes and esports athletes' groups presented significant variation ($P < 0.0001$). The value of BGC was found to be 73.80 ± 1.20 mg/dL in esports athletes and 73.00 ± 1.00 mg/dL in athletes.

± 1.14 in active group. Whereas the value of BGC was found to be 92.30 ± 2.85 in inactive participants. Comparison of age in both physically athletes and esports athletes' groups presented no significant variation (Figure1; Table 1).

Discussion

Physical activity like walking, running, jumping, cricket, badminton, hockey etc. is inversely related with the serum cortisol level (Klaperski et al., 2013, 2014; Rimmele et al., 2007,

2009; Strahler et al., 2016). Cortisol; a stress biomarker elevates in serum during sedentary lifestyle, leading to different health concerns. (Smyth et al., 2013).

Acute stress may enhance the decision-making ability and the brain capability for certain types of tasks (McEwen et al., 2013). On the contrary, chronic stress disrupts mental abilities and reduces the intracellular communication in hippocampus and prefrontal cortex that effect on decision-making power and short-term memory (Popoli et al., 2012).

Table 1: Comprehensive presentation of studied variable in physically active and physically inactive groups.

Parameters	Athletes (n=20)	Esports Athletes (n=20)	P –Value	%age Difference
Cortisol (μg/dL)	10.88 ± 0.63	17.37 ± 0.72	< 0.0001	60↑***
BMI (Kg/m²)	20.91 ± 0.77	21.56 ± 0.85	0.5	3.1↑
Diastole (mmHg)	78.05 ± 1.41	81.95 ± 1.62	0.07	4.99↑
Systole (mmHg)	118.6 ± 1.49	122.6 ± 1.70	0.08	3.3↑
Age (Years)	16.90 ± 0.20	16.20 ± 0.28	0.05	4.1↓
BG (mg/dL)	73.80 ± 1.14	92.30 ± 2.85	< 0.0001	25↑***

BMI: Body Mass Index, **BG:** Blood Glucose, **mg/dL:** milligram per deciliter, **μg/dL:** microgram per decilitre

Esports effect emotions causing stress in the players which lead to increase in cortisol level. Moreover, disturbance in sleep-wake cycle can disturb body's circadian rhythm affecting the hormonal level. Furthermore, esports of intensive nature cause overstimulation of CNS that triggers the body stress leading to increase in the cortisol level (Aliyari et al., 2019; Anderson 2004).

High cortisol level has been reported previously in athletes competition setting as compared to pre- and post-game (Arruda et al., 2014). Most of the sports involving physical activities are held in daytime, that does not affect the circadian rhythm of the athletes, hence, cortisol level is low. Stress induced elevated hormonal level helps to cope with stress (Casanova et al., 2020).

In current study, elevated BGC in esports athletes as compared to athletes are in agreement with previously published data that reported increase in BGC due to increase in cortisol level (Djakani et al., 2013). Due to competitive pressure, an esports athletes experience stress, leading to higher BGC due to epinephrine, nor-epinephrine and cortisol. The increase in BGC is because cortisol inhibits the action of insulin and promotes glucagon function (Pratiwi et al., 2014, PEI, 2015, Sukartini et al., 2020). BGC has been reported to decrease during aerobic exercise (Poehlman et al., 2000). BGC in diabetes type II patients is well controlled due to exercise (Yang et al., 2014).

Systolic and diastolic blood pressure is lower in physically active person as compared to physically inactive person with low the risk of cardiovascular disease, which is in accordance with previous studies (Adler et al., 2000). In esports athletes, stress mediated high level of cortisol stimulates the heartbeat and narrows the blood vessels which elevate the blood pressure (Smyth et al., 2013, Pires et al., 2020).

According to a number of studies, those who regularly exercise often have lower BMI values than people who lead sedentary lives. Frequent exercise, especially aerobic exercises like cycling, swimming, or running, improves fat oxidation and encourages the growth of lean muscle mass, all of which lead to a lower BMI and a better body composition (Willis et al., 2012).

Sedentary habits, on the other hand, such as extended sitting or little exercise, are linked to lower energy expenditure and a greater risk of weight gain, which will ultimately result in higher BMI levels (Thorp et al., 2011; Chau et al., 2013).

Modern lifestyle, generational differences and technology accessibility led to the trend of younger people prefer esports over the regular sports (Granic et al., 2014). Parental approach to engage the children with mobile devices to make them busy is another factor of esports preference over regular sports. (Przybylski and Weinstein, 2017).

Conclusion

Athletes of active games are less prone obesity, cardiovascular disease, type-II diabetes etc. with normal serum cortisol levels. On the other hand, esports athletes spend most of the time with zero to no physical activity, that put them at high risk of obesity, cardiovascular diseases, type II Diabetes, dementia, depression, anxiety, etc. with poor cognitive function.

Author contributions

FB, SY; Sample and data collection, MAI; Data analysis and writeup, UR: Conceptualization of the study, AS Editing and proof reading, FL; Biochemical analysis.

References

Adler, N. E., Epel, E. S., Castellazzo, G., & Ickovics, J. R. (2000). Relationship of subjective and objective social status with psychological and physiological functioning: preliminary data in healthy white women. *Health Psychology, 19*(6), 586–592. <https://doi.org/10.1037/0278-6133.19.6.586>

Aliyari, H., Sahraei, H., Erfani, M., Tekieh, E., Salehi, M., Kazemi, M., Daliri, M.R., Minaei, B., Agaei, H., Sarahian, N., Hadipour, M.M., Ronaghi, M., & Aghdam, A.R. (2019). The impacts of video games on cognitive function and cortisol levels in young female volunteers. *Journal of Experimental & Clinical Neurosciences, 6*(1), 1-5.

Anderson C. A. (2004). An update on the effects of playing violent video games. *Journal of Adolescence*, 27(1), 113–122. <https://doi.org/10.1016/j.adolescence.2003.10.009>

Arruda, A. F. S., Aoki, M. S., Paludo, A. C., Drago, G., & Moreira, A. (2018). Competition stage influences perceived performance but does not affect rating of perceived exertion and salivary neuro-endocrine-immune markers in elite young basketball players. *Physiology & Behavior*, 188, 151–156. <https://doi.org/10.1016/j.physbeh.2018.02.009>

Arruda, A. P., Pers, B. M., Parlakgül, G., Güney, E., Inouye, K., & Hotamisligil, G. S. (2014). Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. *Nature Medicine*, 20(12), 1427–1435. <https://doi.org/10.1038/nm.3735>

Biddle, S. J., & Asare, M. (2011). Physical activity and mental health in children and adolescents: a review of reviews. *British Journal of Sports Medicine*, 45(11), 886–895. <https://doi.org/10.1136/bjsports-2011-090185>

Boone, K. B. (2007). A reconsideration of the Slick et al. (1999) criteria for malingered neurocognitive dysfunction. In K. B. Boone (Ed.), *Assessment of feigned cognitive impairment: A neuropsychological perspective* (pp. 29–49). The Guilford Press.

Bos, P. A., Panksepp, J., Bluthé, R. M., & van Honk, J. (2012). Acute effects of steroid hormones and neuropeptides on human social-emotional behavior: a review of single administration studies. *Frontiers in Neuroendocrinology*, 33(1), 17–35. <https://doi.org/10.1016/j.yfrne.2011.01.002>

Casanova, N. R., Travassos, B. R., Ferreira, S. S., Garrido, N. D., & Costa, A. M. (2020). Concentration of salivary cortisol and testosterone in elite women football players: Analysis of performance in official matches. *Kinesiology*, 52(1.), 1-9. <https://doi.org/10.26582/k.52.1.1>

Cauderay, M., & Cachat, F. (2015). Analysis of exercise training for treating obesity in children and adolescents: a review of recent programs. *Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie*, 63(3), 36–42. <https://doi.org/10.34045/SSEM/2015/19>

Chau, J. Y., Grunseit, A., Midthjell, K., Holmen, J., Holmen, T. L., Bauman, A. E., & Van der Ploeg, H. P. (2015). Sedentary behaviour and risk of mortality from all-causes and cardiometabolic diseases in adults: evidence from the HUNT3 population cohort. *British Journal of Sports Medicine*, 49(11), 737–742. <https://doi.org/10.1136/bjsports-2012-091974>

Djakani, H., Masinem, T., & Yanti, M. (2013). Gambaran kadar gula darah puasa pada laki-laki usia 40-59 tahun. *eBiomedik*, 1(1) 71–75. <https://doi.org/10.35790/ebm.v1i1.1165>

Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., Lambourne, K., & Szabo-Reed, A. N. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. *Medicine and Science in Sports and Exercise*, 48(6), 1197–1222. <https://doi.org/10.1249/MSS.0000000000000901>

Granic, I., Lobel, A., & Engels, R. C. (2014). The benefits of playing video games. *The American Psychologist*, 69(1), 66–78. <https://doi.org/10.1037/a0034857>

Hébert, S., Béland, R., Dionne-Fournelle, O., Crête, M., & Lupien, S. J. (2005). Physiological stress response to video-game playing: the contribution of built-in music. *Life Sciences*, 76(20), 2371–2380. <https://doi.org/10.1016/j.lfs.2004.11.011>

Jones, S. (2003). *Let the games begin: Gaming technology and college students*. <https://www.pewresearch.org/internet/2003/07/06/let-the-games-begin-gaming-technology-and-college-students/>

Khan, N. A., & Hillman, C. H. (2014). The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. *Pediatric Exercise Science*, 26(2), 138–146. <https://doi.org/10.1123/pes.2013-0125>

Klaperski, S., von Dawans, B., Heinrichs, M., & Fuchs, R. (2013). Does the level of physical exercise affect physiological and psychological responses to psychosocial stress in women? *Psychology of Sport and Exercise*, 14(2), 266–274. <https://doi.org/10.1016/j.psychsport.2012.11.003>

Klaperski, S., von Dawans, B., Heinrichs, M., & Fuchs, R. (2014). Effects of a 12-week endurance training program on the physiological response to psychosocial stress in men: a randomized controlled trial. *Journal of Behavioral Medicine*, 37(6), 1118–1133. <https://doi.org/10.1007/s10865-014-9562-9>

Leis, O., & Lautenbach, F. (2020). Psychological and physiological stress in non-competitive and competitive esports settings: A systematic review. *Psychology of Sport and Exercise*, 51, 101738. <https://doi.org/10.1016/j.psychsport.2020.101738>

McEwen, B. S., & Morrison, J. H. (2013). The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. *Neuron*, 79(1), 16–29. <https://doi.org/10.1016/j.neuron.2013.06.028>

Peng, W., Crouse, J. C., & Lin, J. H. (2013). Using active video games for physical activity promotion: a systematic review of the current state of research. *Health Education & Behavior*, 40(2), 171–192. <https://doi.org/10.1177/1090198112444956>

Penko, A. L., & Barkley, J. E. (2010). Motivation and physiologic responses of playing a physically interactive video game relative to a sedentary alternative in children. *Annals of Behavioral Medicine*, 39(2), 162–169. <https://doi.org/10.1007/s12160-010-9164-x>

Pires, N. F., Coelho-Júnior, H. J., Gambassi, B. B., de Faria, A. P. C., Ritter, A. M. V., de Andrade Barboza, C., Ferreira-Melo, S. E., Rodrigues, B., & Júnior, H. M. (2020). Combined Aerobic and Resistance Exercises Evokes Longer Reductions on Ambulatory Blood Pressure in Resistant Hypertension: A Randomized Crossover Trial. *Cardiovascular Therapeutics*, 2020, 8157858. <https://doi.org/10.1155/2020/8157858>

Poehlman, E. T., Dvorak, R. V., DeNino, W. F., Brochu, M., & Ades, P. A. (2000). Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: a controlled randomized trial. *The Journal of Clinical*

Endocrinology and Metabolism, 85(7), 2463–2468.

<https://doi.org/10.1210/jcem.85.7.6692>

Popoli, M., Yan, Z., McEwen, B. S., & Sanacora, G. (2011). The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. *Nature reviews. Neuroscience*, 13(1), 22–37. <https://doi.org/10.1038/nrn3138>

Przybylski, A. K., & Weinstein, N. (2017). A Large-Scale Test of the Goldilocks Hypothesis. *Psychological Science*, 28(2), 204–215. <https://doi.org/10.1177/0956797616678438>

Rimmele, U., Seiler, R., Marti, B., Wirtz, P. H., Ehlert, U., & Heinrichs, M. (2009). The level of physical activity affects adrenal and cardiovascular reactivity to psychosocial stress. *Psychoneuroendocrinology*, 34(2), 190–198.

<https://doi.org/10.1016/j.psyneuen.2008.08.023>

Rimmele, U., Zellweger, B. C., Marti, B., Seiler, R., Mohiyeddini, C., Ehlert, U., & Heinrichs, M. (2007). Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men. *Psychoneuroendocrinology*, 32(6), 627–635.

<https://doi.org/10.1016/j.psyneuen.2007.04.005>

Rolls E. T. (2015). Emotion and decision-making explained: response to commentators. *Cortex*, 62, 203–210.

<https://doi.org/10.1016/j.cortex.2014.04.010>

Rolls, E. T., Critchley, H. D., Browning, A. S., & Inoue, K. (2006). Face-selective and auditory neurons in the primate orbitofrontal cortex. *Experimental Brain Research*, 170(1), 74–87. <https://doi.org/10.1007/s00221-005-0191-y>

Russell, G., & Lightman, S. (2019). The human stress response. *Nature Reviews. Endocrinology*, 15(9), 525–534.

<https://doi.org/10.1038/s41574-019-0228-0>

Smyth, J., Zawadzki, M., & Gerin, W. (2013). Stress and disease: A structural and functional analysis. *Social and Personality Psychology Compass*, 7(4), 217-227.

<https://doi.org/10.1111/spc.12020>

Stajer, V., Vranes, M., & Ostojic, S. M. (2020). Correlation between biomarkers of creatine metabolism and serum indicators of peripheral muscle fatigue during exhaustive exercise in active men. *Research in Sports Medicine*, 28(1), 147–154. <https://doi.org/10.1080/15438627.2018.1502185>

Strahler, J., Doerr, J. M., Ditzen, B., Linnemann, A., Skoluda, N., & Nater, U. M. (2016). Physical activity buffers fatigue only under low chronic stress. *Stress*, 19(5), 535–541.

<https://doi.org/10.1080/10253890.2016.1192121>

Sukartini, T., Mulyasari, P., & Wahyuni, E. D. (2020). The relationship of family support and patients' knowledge with the treatment adherence of hypertension patients. *Systematic Reviews in Pharmacy*, 11(6), 1108-1110.

Thorp, A. A., Owen, N., Neuhaus, M., & Dunstan, D. W. (2011). Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996-2011. *American Journal of Preventive Medicine*, 41(2), 207–215.

<https://doi.org/10.1016/j.amepre.2011.05.004>

Willis, L. H., Slentz, C. A., Bateman, L. A., Shields, A. T., Piner, L. W., Bales, C. W., Houmard, J. A., & Kraus, W. E. (2012). Effects of aerobic and/or resistance training on body

mass and fat mass in overweight or obese adults. *Journal of Applied Physiology*, 113(12), 1831–1837.

<https://doi.org/10.1152/japplphysiol.01370.2011>

Yang, Z., Scott, C. A., Mao, C., Tang, J., & Farmer, A. J. (2014). Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis. *Sports medicine*, 44(4), 487–499. <https://doi.org/10.1007/s40279-013-0128-8>