AS

Collagen: An Overview from Past to Future Applications

Authors
  • Fakhar Zaman

    Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
    Author
  • Muhammad Waqas Ishaq

    Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
    Author
  • Abdullah Muhammad Sohail

    Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan.
    Author
Keywords:
Animal Source, Collagen, Cosmetics, Cosmetic Industry, Synthetic Source
Abstract

Collagen, a structural protein, prevalent in animals, especially in skin, bones, and joints, responsible for providing fundamental structural support, is being used extensively in cosmetics. Mammalian and fish skin are the most common sources of collagen. Collagen's unique qualities, such as its role as a natural humectant and moisturizer for the skin, have piqued the curiosity of both academics and the cosmetic industry. In this review study, collagen biosynthesis, collagen sources used in the cosmetic industry, and collagen's function in cosmetics are discussed along with future aspects of collagen-based materials in cosmetics.

References

Avila Rodríguez, M. I., Rodríguez Barroso, L. G., & Sánchez, M. L. (2018). Collagen: A review on its sources and potential cosmetic applications. Journal of Cosmetic Dermatology, 17(1). https://doi.org/10.1111/jocd.12450

Bailey, A. J., & Paul, R. G. (1998). Collagen: A not so simple protein. Journal of The Society of Leather Technologists and Chemists, 82, 104–110.

Bax, D. V., Smalley, H. E., Farndale, R. W., Best, S. M., & Cameron, R. E. (2019). Cellular response to collagen-elastin composite materials. Acta Biomaterialia, 86.

https://doi.org/10.1016/j.actbio.2018.12.033

Bhagwat, P., & Dandge, P. B. (2016). Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries. Biocatalysis and Agricultural Biotechnology, 7, 234–240.

Blease, A. M. (2021). Novel mouse models of Col-1 related overlap syndrome, with late onset osteoarthritis [The Open University]. http://oro.open.ac.uk/81219/

Bretaud, S., Guillon, E., Karppinen, S. M., Pihlajaniemi, T., & Ruggiero, F. (2020). Collagen XV, a multifaceted multiplexin present across tissues and species. Matrix Biology Plus, 6–7. https://doi.org/10.1016/j.mbplus.2020.100023

Dehdashtian, E., Pourhanifeh, M. H., Hemati, K., Mehrzadi, S., & Hosseinzadeh, A. (2020). Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes/Metabolism Research and Reviews, 36(8), e3336.

https://doi.org/https://doi.org/10.1002/dmrr.3336

Deng, G., Guo, S., Zaman, F., Li, T., & Huang, Y. (2020). Recent advances in animal origin identification of gelatin-based products using liquid chromatography-mass spectrometry methods: A mini review. Reviews in Analytical Chemistry, 39(1), 260–271. https://doi.org/doi:10.1515/revac-2020-0121

Ding, D., Du, B., Zhang, C., Zaman, F., & Huang, Y. (2019). Isolation and identification of an antioxidant collagen peptide from skipjack tuna (Katsuwonus pelamis) bone †. RSC Advances, 2019(9), 27032–27041.

https://doi.org/10.1039/c9ra04665h

Du, B., Deng, G., Zaman, F., Ma, H., Li, X., Chen, J., Li, T., & Huang, Y. (2021). Antioxidant cuttlefish collagen hydrolysate against ethyl carbamate-induced oxidative damage. RSC Advances, 2021(11), 2337–2345.

https://doi.org/10.1039/d0ra08487e

Fan, J., Zhuang, Y., & Li, B. (2013). Effects of collagen and collagen hydrolysate from jellyfish umbrella on histological and immunity changes of mice photoaging. Nutrients, 5, 223–233. https://doi.org/10.3390/nu5010223

Fischer, N. G., Kobe, A. C., Dai, J., He, J., Wang, H., Pizarek, J. A., de Jong, D. A., Ye, Z., Huang, S., & Aparicio, C. (2022). Tapping basement membrane motifs: Oral junctional epithelium for surface-mediated soft tissue attachment to prevent failure of percutaneous devices. Acta Biomaterialia, 141.

https://doi.org/10.1016/j.actbio.2021.12.030

Gallo, N., Natali, M. L., Quarta, A., Gaballo, A., Terzi, A., Sibillano, T., Giannini, C., de Benedetto, G. E., Lunetti, P., Capobianco, L., Blasi, F. S., Sicuro, A., Corallo, A., Sannino, A., & Salvatore, L. (2022). Aquaponics derived Tilapia skin collagen for biomaterials development. Polymers, 2022(14), 1865. https://doi.org/10.3390/polym14091865

Ganceviciene, R., Liakou, A. I., Theodoridis, A., Makrantonaki, E., & Zouboulis, C. C. (2012). Skin anti-aging strategies. Dermato-Endocrinology, 4(3), 308–319.

https://doi.org/10.4161/derm.22804

Geahchan, S., Baharlouei, P., & Rahman, M. A. (2022). Marine Collagen: A promising biomaterial for wound healing, skin anti-aging, and bone regeneration. In Marine Drugs, 20, (1).

https://doi.org/10.3390/md20010061

Gopalakrishnan, S., Xu, J., Zhong, F., & Rotello, V. M. (2021). Strategies for fabricating protein films for biomaterial applications. Advanced Sustainable Systems, 5(1), 2000167. https://doi.org/https://doi.org/10.1002/adsu.202000167

Heath, R. S., Ruscoe, R. E., & Turner, N. J. (2022). The beauty of biocatalysis: Sustainable synthesis of ingredients in cosmetics. Natural Product Reports, 39(2).

https://doi.org/10.1039/d1np00027f

Ikeda, Y., Holcroft, J., Ikeda, E., & Ganss, B. (2022). Amelotin promotes mineralization and adhesion in collagen-based systems. Cellular and Molecular Bioengineering, 15(3), 245–254. https://doi.org/10.1007/s12195-022-00722-2

Jridi, M., Bardaa, S., Moalla, D., Rebaii, T., Souissi, N., Sahnoun, Z., & Nasri, M. (2015). Microstructure, rheological and wound healing properties of collagen-based gel from cuttlefish skin. International Journal of Biological Macromolecules, 77.

https://doi.org/10.1016/j.ijbiomac.2015.03.020

Karsdal, M. A. (2019). Biochemistry of collagens, laminins, and elastin: Structure, function, and biomarkers. In Biochemistry of Collagens, Laminins and Elastin: Structure, Function and Biomarkers. https://doi.org/10.1016/C2018-0-00074-2

Kong, M., Chen, H., Jiang, Y., Xin, Y., Han, Y., & Sheng, H. (2021). Association between intraoperative application of microfibrillar collagen hemostat and anastomotic leakage after anterior resection for rectal cancer: A retrospective case-control study. Surgery, 169(4).

https://doi.org/10.1016/j.surg.2020.09.038

Kumar, V. A., Taylor, N. L., Jalan, A. A., Hwang, L. K., Wang, B. K., & Hartgerink, J. D. (2014). A nanostructured synthetic collagen mimic for hemostasis. Biomacromolecules, 15(4), 1484–1490. https://doi.org/10.1021/bm500091e

León-López, A., Morales-Peñaloza, A., Manuel Martínez-Juárez, V., Vargas-Torres, A., Zeugolis, D. I., Aguirre-Álvarez, G., Pintado, M., Coscueta, E., & Brassesco, M. E. (2019). Hydrolyzed collagen-Sources and Applications. Molecules, 24(22), 4031. https://doi.org/10.3390/molecules24224031

Miner, J. H. (2020). Type IV collagen and diabetic kidney disease. Nature Reviews Nephrology, 16(1).

https://doi.org/10.1038/s41581-019-0229-1

Niculescu, M.-D., Epure, D.-G., Lasoń-Rydel, M., Gaidau, C., Gidea, M., & Enascuta, C. (2019). Biocomposites based on collagen and keratin with properties for agriculture and industrie applications. The EuroBiotech Journal, 3(3).

https://doi.org/10.2478/ebtj-2019-0019

Papanicolaou, M., Parker, A. L., Yam, M., Filipe, E. C., Wu, S. Z., Chitty, J. L., Wyllie, K., Tran, E., Mok, E., Nadalini, A., Skhinas, J. N., Lucas, M. C., Herrmann, D., Nobis, M., Pereira, B. A., Law, A. M. K., Castillo, L., Murphy, K. J., Zaratzian, A., … Cox, T. R. (2022). Temporal profiling of the breast tumour microenvironment reveals collagen XII as a driver of metastasis. Nature Communications, 13, 4587.

https://doi.org/10.1038/s41467-022-32255-7

Parenteau-Bareil, R., Gauvin, R., & Berthod, F. (2010). Collagen based biomaterials for tissue engineering applications. Materials, 3, 1863–1887. https://doi.org/10.3390/ma3031863

Park, J., & Lakes, R. S. (2007). Biomaterials: An Introduction (3rd ed.). Springer.

Prockop, D. J., Berg, R. A., Kivirikko, K. J., & Uitto, I. (1976). Biochemistry of Collagen. In G. N. Ramachandran & A. H. Reddi (Eds.), Biochemistry of Collagen (pp. 163–273). Plenum Publishing Corporation.

Ramshaw, J. A. M., Vaughan, P. R., & Werkmeister, J. A. (2001). Applications of collagen in medical devices. Biomedical Engineering - Applications, Basis, and Communications, 13(1). https://doi.org/10.4015/S1016237201000042

Ressini, D. F. S. (2015). Estándares de belleza y cultura en la manifestación de anorexia en jóvenes del corregimiento de Bellavista en Ciudad de Panamá: Beauty and culture standards in the rise of anorexia among the young people of Bellavista, in Panama City. Punto Cero, 20(31), 35–54.

http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1815-02762015000200005&lng=es&nrm=iso&tlng=es

Ricard-Blum, S. (2011). The Collagen Family. Cold Spring Harbor Perspectives in Biology, 3(1), a004978.

https://doi.org/10.1101/cshperspect.a004978

Rodrigues, I. C. P., Pereira, K. D., Woigt, L. F., Jardini, A. L., Luchessi, A. D., Lopes, É. S. N., Webster, T. J., & Gabriel, L. P. (2021). A novel technique to produce tubular scaffolds based on collagen and elastin. Artificial Organs, 45(5).

https://doi.org/10.1111/aor.13857

Sadri, G., Fischer, A. G., Brittian, K. R., Elliott, E., Nystoriak, M. A., Uchida, S., Wysoczynski, M., Leask, A., Jones, S. P., & Moore, J. B. (2022). Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function. Matrix Biology, 109. https://doi.org/10.1016/j.matbio.2022.03.007

Samad, N., & Sikarwar, A. (2016). Collagen: New Dimension in Cosmetic and Healthcare. International Journal of Biochemistry Research & Review, 14(3).

https://doi.org/10.9734/ijbcrr/2016/27271

Schroeder, A. W., Sur, S., Rashmi, P., Damm, I., Zarinsefat, A., Kretzler, M., Hodgin, J., Sigdel, T., Hartoularos, G., Ye, J. C., & Sarwal, M. M. (2020). Novel human kidney cell subsets identified by Mux-Seq. Transplantation, 104(S3).

https://doi.org/10.1097/01.tp.0000698680.69665.ce

Sharma, S., Rai, V. K., Narang, R. K., & Markandeywar, T. S. (2022). Collagen-based formulations for wound healing: A literature review. Life Sciences, 290, 120096.

https://doi.org/https://doi.org/10.1016/j.lfs.2021.120096

Sibilla, S., Godfrey, M., Brewer, S., Budh-Raja, A., & Genovese, L. (2015). An overview of the beneficial effects of hydrolysed collagen as a nutraceutical on skin properties: Scientific background and clinical studies. The Open Nutraceuticals Journal, 8, 29–42.

Silvipriya, K. S., Krishna Kumar, K., Bhat, A. R., Dinesh Kumar, B., John, A., & Lakshmanan, P. (2015). Collagen: Animal sources and biomedical application. Journal of Applied Pharmaceutical Science, 5(3).

https://doi.org/10.7324/JAPS.2015.50322

Sionkowska, A. (2021). Collagen blended with natural polymers: Recent advances and trends. Progress in Polymer Science, 122, 101452. https://doi.org/10.1016/j.progpolymsci.2021.101452

Sionkowska, A., Adamiak, K., Musial, K., & Gadomska, M. (2020). Collagen based materials in cosmetic applications: A review. Materials,13(19). https://doi.org/10.3390/MA13194217

Sionkowska, A., Skrzyński, S., Śmiechowski, K., & Kołodziejczak, A. (2017). The review of versatile application of collagen. Polymers for Advanced Technologies, 28(1), 4–9. https://doi.org/https://doi.org/10.1002/pat.3842

Song, W. K., Liu, D., Sun, L. L., Li, B. F., & Hou, H. (2019). Physicochemical and biocompatibility properties of type I collagen from the skin of Nile Tilapia (Oreochromis niloticus) for biomedical applications. Marine Drugs, 17(3). https://doi.org/10.3390/md17030137

Sorrentino, A., Igielska-Kalwat, J., Kilian-Pi˛ Eta, E., & Połoczá Nska-Godek, S. (2022). The use of natural collagen obtained from fish waste in hair styling and care. Polymers, 2022(14), 749. https://doi.org/10.3390/polym14040749

Sorushanova, A., Delgado, L. M., Wu, Z., Shologu, N., Kshirsagar, A., Raghunath, R., Mullen, A. M., Bayon, Y., Pandit, A., Raghunath, M., & Zeugolis, D. I. (2019). The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Advanced Materials, 31(1).

https://doi.org/10.1002/adma.201801651

Stang, F., Keilhoff, G., & Fansa, H. (2009). Biocompatibility of different nerve tubes. Materials, 2, 1480–1507.

https://doi.org/10.3390/ma2041480

Tian, D.-M., Wan, H.-H., Chen, J.-R., Ye, Y.-B., He, Y., Liu, Y., Tang, L.-Y., He, Z.-Y., Liu, K.-Z., Gao, C.-J., Li, S.-L., Xu, Q., Yang, Z., Lai, C., Xu, X.-J., Ruan, C.-S., Xu, Y.-S., Zhang, C., Luo, L., & Yan, L.-P. (2022). In-situ formed elastin-based hydrogels enhance wound healing via promoting innate immune cells recruitment and angiogenesis. Materials Today Bio, 15, 100300.

https://doi.org/https://doi.org/10.1016/j.mtbio.2022.100300

Uitto, J. (2019). Toward treatment and cure of epidermolysis bullosa. Proceedings of the National Academy of Sciences of the United States of America, 116(52).

https://doi.org/10.1073/pnas.1919347117

Wei, P., Zheng, H., Shi, Z., Li, D., & Xiang, Y. (2019). Isolation and characterization of acid-soluble collagen and pepsin-soluble collagen from the skin of hybrid sturgeon. Journal Wuhan University of Technology, Materials Science, 34(4). https://doi.org/10.1007/s11595-019-2143-6

Williams, M. (2014). Synthetic collagen promotes natural clotting. Rice University News & Media.

Downloads
Published
2022-11-15
Section
Review Articles
License

Copyright (c) 2022 Authors

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

How to Cite

Collagen: An Overview from Past to Future Applications. (2022). Albus Scientia, 2022(2), 1-6. https://doi.org/10.56512/

Most read articles by the same author(s)