AS

Vitamin D: A Ray of Hope in Combating COVID-19

Authors
  • Abdullah Muhammad Sohail

    Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
    Author
  • Muhammad Babar Khawar

    Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
    Author
  • Ali Afzal

    Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
    Author
  • Muhammad Idnan

    Department of Wildlife & Ecology, University of Okara, Okara, Pakistan
    Author
  • Sjawal Arshad

    Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
    Author
  • Ume Habiba

    Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
    Author
  • Syeda Eisha Hamid

    Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
    Author
  • Sara Shahzaman

    Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
    Author
  • Nayab Shahid

    Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
    Author
  • Muhammad Ahsan Ashraf

    Department of Zoology, University of Education, Lahore, Pakistan
    Author
  • Momna Ramzan

    Faisalabad Medical University, Faisalabad, Pakistan
    Author
Keywords:
COVID-19, Vitamin-D, SARS-CoV-2, Pandemic, Therapeutics
Abstract

COVID-19, which is caused by the SARS-CoV-2 virus, is the current global pandemic. As it spreads at an exponential and precipitous rate, it causes significant organ damage, which can potentially lead to death. Although there appears to be no specific cure or resistance to this outbreak, the use and administration of Vitamin D (VD) supplements is still a viable option, as evidenced by numerous clinical trials, studies, and observations. The results of the previous investigation have revealed that people with COVID-19 had reduced levels of VD, especially those with severe and critical diseases. The arrangement of receptors such as the angiotensin-converting enzyme (ACE-II) is altered by VD. As a result, it plays an important role in immune system responses to cytokine storms and interleukins. This review aims to uncover and explain how VD might help in combating COVID-19 and possibly hold the key to minimizing its hazard in the light of currently available therapeutic strategies. Finally, we compare and contrast other researcher’s approaches to VD and COVID-19.

References

Ali, N. (2020). Role of vitamin D in preventing of COVID-19 infection, progression, and severity. Journal of Infection and Public Health, 13(10), 1373–1380.

https://doi.org/https://doi.org/10.1016/j.jiph.2020.06.021

Alinia-Ahandani, E., & Sheydaei, M. (2020). Overview of the Introduction to the New Coronavirus (Covid19): A Review. Journal of Medical and Biological Science Research, 6(2), 14–20. https://doi.org/10.36630/jmbsr_20005

Amaan, H. N., Khawar, M. B., Abbasi, M. H., & Sheikh, N. (2020). Risk assessment in Pakistani health workers during COVID-19 pandemic. RADS Journal of Pharmacy and Pharmaceutical Sciences, 8(2), 126-128.

https://doi.org/10.37962/jpps.v8i2.422

Bilezikian, J. P., Bikle, D., Hewison, M., Lazaretti-Castro, M., Formenti, A. M., Gupta, A., Madhavan, M. V, Nair, N., Babalyan, V., Hutchings, N., Napoli, N., Accili, D., Binkley, N., Landry, D. W., & Giustina, A. (2020). Mechanisms in Endocrinology: Vitamin D and COVID-19. European Journal of Endocrinology, 183(5), R133–R147.

https://doi.org/10.1530/EJE-20-0665

Cereda, E., Bogliolo, L., de Stefano, L., & Caccialanza, R. (2021). A brief discussion of the benefit and mechanism of vitamin D supplementation on coronavirus disease 2019. Current Opinion in Clinical Nutrition & Metabolic Care, 24(1). https://journals.lww.com/co-clinicalnutrition/Fulltext/2021/01000/A_brief_discussion_of_the_benefit_and_mechanism_of.17.aspx

Chan-Yeung, M., & Xu, R.-H. (2003). SARS: Epidemiology. Respirology, 8(s1), S9–S14.

https://doi.org/https://doi.org/10.1046/j.1440-1843.2003.00518.x

Čulić, S. (2021). Viral Infections, Including Influenza and Corona Virus Disease 2019, and Vitamin D: A Mini-Review. In Ö. Özdemir (Ed.), Vitamin D (p. Ch. 5). IntechOpen. https://doi.org/10.5772/intechopen.96102

Ebadi, M., & Montano-Loza, A. J. (2020). Perspective: improving vitamin D status in the management of COVID-19. European Journal of Clinical Nutrition, 74(6), 856–859. https://doi.org/10.1038/s41430-020-0661-0

Farooq, A., Abbasi, M. H., Khawar, M. B., & Sheikh, N. (2022). A Recent Update on the Role of Nutraceuticals in COVID-19 Infection. Asian Journal of Health Sciences, 8(2), ID41. https://doi.org/https://doi.org/10.15419/ajhs.v8i2.512

Gerber, A., Welte, T., Ansorge, S., & Bühling, F. (2002). Expression of Cathepsins B and L in Human Lung Epithelial Cells is Regulated by Cytokines. In Cellular Peptidases in Immune Functions and Diseases (Vol. 477, pp. 287–292). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-46826-3_31

Grant, W., Lahore, H., McDonnell, S., Baggerly, C., French, C., Aliano, J., & Bhattoa, H. (2020). Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients, 12(4), 988.

https://doi.org/10.3390/nu12040988

Guo, T., Fan, Y., Chen, M., Wu, X., Zhang, L., He, T., Wang, H., Wan, J., Wang, X., & Lu, Z. (2020). Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiology, 5(7), 811–818. https://doi.org/10.1001/jamacardio.2020.1017

Halline, A. G., Davidson, N. O., Skarosi, S. F., Sitrin, M. D., Tietze, C., Alpers, D. H., & Brasitus, T. A. (1994). Effects of 1,25-dihydroxyvitamin D3 on proliferation and differentiation of Caco-2 cells. Endocrinology, 134(4), 1710–1717. https://doi.org/10.1210/endo.134.4.8137734

Huang, I.-C., Bosch, B. J., Li, F., Li, W., Lee, K. H., Ghiran, S., Vasilieva, N., Dermody, T. S., Harrison, S. C., Dormitzer, P. R., Farzan, M., Rottier, P. J. M., & Choe, H. (2006). SARS Coronavirus, but Not Human Coronavirus NL63, Utilizes Cathepsin L to Infect ACE2-expressing Cells. Journal of Biological Chemistry, 281(6), 3198–3203. https://doi.org/10.1074/jbc.M508381200

Jones, G., Strugnell, S. A., & DeLuca, H. F. (1998). Current Understanding of the Molecular Actions of Vitamin D. Physiological Reviews, 78(4), 1193–1231. https://doi.org/10.1152/physrev.1998.78.4.1193

Kahn, J. S., & McIntosh, K. (2005). History and Recent Advances in Coronavirus Discovery. Pediatric Infectious Disease Journal, 24(11), S223–S227. https://doi.org/10.1097/01.inf.0000188166.17324.60

Kalra, E. K. (2003). Nutraceutical-definition and introduction. AAPS PharmSci, 5(3), 27–28. https://doi.org/10.1208/ps050325

Khare, D., Godbole, N. M., Pawar, S. D., Mohan, V., Pandey, G., Gupta, S., Kumar, D., Dhole, T. N., & Godbole, M. M. (2013). Calcitriol [1, 25[OH]2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. European Journal of Nutrition, 52(4), 1405–1415. https://doi.org/10.1007/s00394-012-0449-7

Khawar, M. B., Abbasi, M. H., Hussain, S., Riaz, M., Rafiq, M., Mehmood, R., Sheikh, N., Amaan, H. N., Fatima, S., Jabeen, F., Ahmad, Z., & Farooq, A. (2021). Psychological impacts of COVID-19 and satisfaction from online classes: disturbance in daily routine and prevalence of depression, stress, and anxiety among students of Pakistan. Heliyon, 7(5), e07030. https://doi.org/10.1016/j.heliyon.2021.e07030

Khawar, M. B., Abbasi, M. H., Sheikh, N., Riaz, M., Rafiq, M., Farooq, A., Ahmad, Z., Fatima, S., & Amaan, H. N. (2022). Second Wave Scenario of COVID-19 in Pakistan and Combating Strategies. Albus Scientia, 2022(1), e220430. https://doi.org/10.56512/AS.2022.1.e220430

Kim, I. M., Norris, K. C., & Artaza, J. N. (2016). Vitamin D and Cardiac Differentiation. Vitamins and Hormones, 100, 299–320. https://doi.org/10.1016/BS.VH.2015.10.008

Laaksi, I., Ruohola, J.-P., Tuohimaa, P., Auvinen, A., Haataja, R., Pihlajamäki, H., & Ylikomi, T. (2007). An association of serum vitamin D concentrations < 40 nmol/L with acute respiratory tract infection in young Finnish men. The American Journal of Clinical Nutrition, 86(3), 714–717. https://doi.org/10.1093/ajcn/86.3.714

Laird, E., Rhodes, J., & Kenny, R. (2020). Vitamin D and Inflammation: Potential Implications for Severity of Covid-19. Irish Medical Journal, 113, 81.

Lei, G.-S., Zhang, C., Cheng, B.-H., & Lee, C.-H. (2017). Mechanisms of Action of Vitamin D as Supplemental Therapy for Pneumocystis Pneumonia. Antimicrobial Agents and Chemotherapy, 61(10). https://doi.org/10.1128/AAC.01226-17

Li, Z., Chen, Y., Yang, B., Song, H., Chen, W., & Zhou, H. (2021). Successful recovery of a patient with multiple myeloma from severe coronavirus disease 2019 (COVID 19) pneumonia during the first chemotherapy cycle: A case report. Experimental and Therapeutic Medicine, 21(4), 392. https://doi.org/10.3892/etm.2021.9823

Lips, P. (2006). Vitamin D physiology. Progress in Biophysics and Molecular Biology, 92(1), 4–8. https://doi.org/10.1016/j.pbiomolbio.2006.02.016

Lordan, R., Rando, H. M., & Greene, C. S. (2021). Dietary Supplements and Nutraceuticals under Investigation for COVID-19 Prevention and Treatment. mSystems, 6(3). https://doi.org/10.1128/mSystems.00122-21

McCartney, D., & Byrne, D. (2020). Optimisation of Vitamin D Status for Enhanced Immuno-protection Against Covid-19. Irish Medical Journal, 113, 58.

McGonagle, D. , O’Donnell, J. S. , Sharif, K. , Emery, P. , & Bridgewood, C. (2020). Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. The Lancet Rheumatology, 2(7), e437–e445. https://doi.org/10.1016/S2665-9913(20)30121-1

Meltzer, D. O., Best, T. J., Zhang, H., Vokes, T., Arora, V., & Solway, J. (2020). Association of Vitamin D Status and Other Clinical Characteristics With COVID-19 Test Results. JAMA Network Open, 3(9), e2019722.

https://doi.org/10.1001/jamanetworkopen.2020.19722

Mohan, M., Cherian, J. J., & Sharma, A. (2020). Exploring links between vitamin D deficiency and COVID-19. PLOS Pathogens, 16(9), e1008874. https://doi.org/10.1371/journal.ppat.1008874

Nasri, H., Baradaran, A., Shirzad, H., & Rafieian-Kopaei, M. (2014). New Concepts in Nutraceuticals as Alternative for Pharmaceuticals. In International Journal of Preventive Medicine (Vol. 5, Issue 12). www.ijpm.ir

Rastogi, A., Bhansali, A., Khare, N., Suri, V., Yaddanapudi, N., Sachdeva, N., Puri, G. D., & Malhotra, P. (2022). Short term, high-dose vitamin D supplementation for COVID-19 disease: a randomised, placebo-controlled, study (SHADE study). Postgraduate Medical Journal, 98(1156), 87–90. https://doi.org/10.1136/postgradmedj-2020-139065

Razdan, K., Singh, K., & Singh, D. (2020). Vitamin D Levels and COVID-19 Susceptibility: Is there any Correlation? Medicine in Drug Discovery, 7, 100051.

https://doi.org/10.1016/J.MEDIDD.2020.100051

Silberstein, M. (2020). Correlation between premorbid IL-6 levels and COVID-19 mortality: Potential role for Vitamin D. International Immunopharmacology, 88, 106995. https://doi.org/10.1016/j.intimp.2020.106995

Skariyachan, S., Challapilli, S. B., Packirisamy, S., Kumargowda, S. T., & Sridhar, V. S. (2019). Recent Aspects on the Pathogenesis Mechanism, Animal Models and Novel Therapeutic Interventions for Middle East Respiratory Syndrome Coronavirus Infections. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00569

Škrovánková, S. (2011). Seaweed Vitamins as Nutraceuticals. Advances in Food and Nutrition Research, 64, 357–369. https://doi.org/10.1016/B978-0-12-387669-0.00028-4

Umar, M., Sastry, K., & Chouchane, A. (2018). Role of Vitamin D Beyond the Skeletal Function: A Review of the Molecular and Clinical Studies. International Journal of Molecular Sciences, 19(6), 1618. https://doi.org/10.3390/ijms19061618

Vimaleswaran, K. S., Forouhi, N. G., & Khunti, K. (2021). Vitamin D and covid-19. BMJ, n544.

https://doi.org/10.1136/bmj.n544

Wang, L., Ahn, M., & E. Anderson, D. (2021). Bats and Coronaviruses in the Context of COVID-19. China CDC Weekly, 3(7), 153–155. https://doi.org/10.46234/ccdcw2021.045

Wang, T.-T., Nestel, F. P., Bourdeau, V., Nagai, Y., Wang, Q., Liao, J., Tavera-Mendoza, L., Lin, R., Hanrahan, J. W., Mader, S., & White, J. H. (2004). Cutting Edge: 1,25-Dihydroxyvitamin D3 Is a Direct Inducer of Antimicrobial Peptide Gene Expression. The Journal of Immunology, 173(5), 2909–2912. https://doi.org/10.4049/jimmunol.173.5.2909

Cover Image
Downloads
Published
2023-03-18
Section
Review Articles
License

Copyright (c) 2023 Abdullah Muhammad Sohail, Muhammad Babar Khawar, Ali Afzal, Muhammad Idnan, Sjawal Arshad, Ume Habiba, Syeda Eisha Hamid, Sara Shahzaman, Nayab Shahid, Muhammad Ahsan Ashraf, Momna Ramzan (Author)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

How to Cite

Vitamin D: A Ray of Hope in Combating COVID-19. (2023). Albus Scientia, 2023(1), 1-7. https://doi.org/10.56512/

Most read articles by the same author(s)

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.