AS

Comparison of Serum Cortisol Levels in Athletes and Esports Athletes

Serum cortisol levels in athletes and esports athletes

Authors
  • Faheem Butt

    Department of Zoology, Lahore Garrison University, DHA, Lahore, Pakistan
    Author
  • Uzma Rafi

    Department of Zoology, Lahore Garrison University, DHA, Lahore, Pakistan
    Author
  • Muhammad Amir Iqbal

    Institute of Zoology, University of the Punjab, Q-A Campus, Lahore, 54590, Pakistan
    Author
  • Sehrish Yasmeen

    Department of Zoology, Lahore Garrison University, DHA, Lahore, Pakistan
    Author
  • Aasia Sharif

    Department of Zoology, University of Gujrat, Pakistan
    Author
  • Farwa Liaqat

    Institute of Zoology, University of the Punjab, Q-A Campus, Lahore, 54590, Pakistan
    Author
Keywords:
Athletes, Cortisol, ELISA, Esports athletes, Gamers
Abstract

Background: Physically active games like soccer, basketball and cycling promote cardiovascular health, improve muscle strength and enhance overall fitness. While physically inactive games may lead to sedentary lifestyle issues like obesity, poor posture and lower metabolism if not balanced with physical activity.

Materials and Methods: The study was designed to evaluate the impact of physically active athletes and esports athletes on cortisol and blood sugar level. A total of forty subjects were recruited in the study. Out of which 20 subjects were athletes and 20 subjects were esports athletes. Serum cortisol and blood glucose were assessed by enzyme-linked immunosorbent assay (ELISA).

Results: The findings of the study showed that serum cortisol and blood glucose was significantly increased (P < 0.001) in esports athletes as compared to athletes with mild elevation of both systolic and diastolic blood pressure in esports athletes as compared to athletes.

Conclusion: Esports athletes have high levels of cortisol, blood glucose, with elevated systolic and diastolic blood. Sedentary lifestyle may lead cardiovascular diseases, type II diabetes, osteoporosis etc. diseases.

References

Adler, N. E., Epel, E. S., Castellazzo, G., & Ickovics, J. R. (2000). Relationship of subjective and objective social status with psychological and physiological functioning: preliminary data in healthy white women. Health Psychology, 19(6), 586–592. https://doi.org/10.1037//0278-6133.19.6.586

Aliyari, H., Sahraei, H., Erfani, M., Tekieh, E., Salehi, M., Kazemi, M., Daliri, M.R., Minaei, B., Agaei, H., Sarahian, N., Hadipour, M.M., Ronaghi, M., & Aghdam, A.R. (2019). The impacts of video games on cognitive function and cortisol levels in young female volunteers. Journal of Experimental & Clinical Neurosciences, 6(1), 1-5.

Anderson C. A. (2004). An update on the effects of playing violent video games. Journal of Adolescence, 27(1), 113–122. https://doi.org/10.1016/j.adolescence.2003.10.009

Arruda, A. F. S., Aoki, M. S., Paludo, A. C., Drago, G., & Moreira, A. (2018). Competition stage influences perceived performance but does not affect rating of perceived exertion and salivary neuro-endocrine-immune markers in elite young basketball players. Physiology & Behavior, 188, 151–156. https://doi.org/10.1016/j.physbeh.2018.02.009

Arruda, A. P., Pers, B. M., Parlakgül, G., Güney, E., Inouye, K., & Hotamisligil, G. S. (2014). Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nature Medicine, 20(12), 1427–1435. https://doi.org/10.1038/nm.3735

Biddle, S. J., & Asare, M. (2011). Physical activity and mental health in children and adolescents: a review of reviews. British Journal of Sports Medicine, 45(11), 886–895. https://doi.org/10.1136/bjsports-2011-090185

Boone, K. B. (2007). A reconsideration of the Slick et al. (1999) criteria for malingered neurocognitive dysfunction. In K. B. Boone (Ed.), Assessment of feigned cognitive impairment: A neuropsychological perspective (pp. 29–49). The Guilford Press.

Bos, P. A., Panksepp, J., Bluthé, R. M., & van Honk, J. (2012). Acute effects of steroid hormones and neuropeptides on human social-emotional behavior: a review of single administration studies. Frontiers in Neuroendocrinology, 33(1), 17–35. https://doi.org/10.1016/j.yfrne.2011.01.002

Casanova, N. R., Travassos, B. R., Ferreira, S. S., Garrido, N. D., & Costa, A. M. (2020). Concentration of salivary cortisol and testosterone in elite women football players: Analysis of performance in official matches. Kinesiology, 52(1.), 1-9. https://doi.org/10.26582/k.52.1.1

Cauderay, M., & Cachat, F. (2015). Analysis of exercise training for treating obesity in children and adolescents: a review of recent programs. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie, 63(3), 36-42. https://doi.org/10.34045/SSEM/2015/19

Chau, J. Y., Grunseit, A., Midthjell, K., Holmen, J., Holmen, T. L., Bauman, A. E., & Van der Ploeg, H. P. (2015). Sedentary behaviour and risk of mortality from all-causes and cardiometabolic diseases in adults: evidence from the HUNT3 population cohort. British Journal of Sports Medicine, 49(11), 737–742. https://doi.org/10.1136/bjsports-2012-091974

Djakani, H., Masinem, T., & Yanti, M. (2013). Gambaran kadar gula darah puasa pada laki-laki usia 40-59 tahun. eBiomedik, 1(1) 71–75. https://doi.org/10.35790/ebm.v1i1.1165

Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., Lambourne, K., & Szabo-Reed, A. N. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Medicine and Science in Sports and Exercise, 48(6), 1197–1222. https://doi.org/10.1249/MSS.0000000000000901

Granic, I., Lobel, A., & Engels, R. C. (2014). The benefits of playing video games. The American Psychologist, 69(1), 66–78. https://doi.org/10.1037/a0034857

Hébert, S., Béland, R., Dionne-Fournelle, O., Crête, M., & Lupien, S. J. (2005). Physiological stress response to video-game playing: the contribution of built-in music. Life Sciences, 76(20), 2371–2380. https://doi.org/10.1016/j.lfs.2004.11.011

Jones, S. (2003). Let the games begin: Gaming technology and college students. https://www.pewresearch.org/internet/2003/07/06/let-the-games-begin-gaming-technology-and-college-students/

Khan, N. A., & Hillman, C. H. (2014). The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatric Exercise Science, 26(2), 138–146. https://doi.org/10.1123/pes.2013-0125

Klaperski, S., von Dawans, B., Heinrichs, M., & Fuchs, R. (2013). Does the level of physical exercise affect physiological and psychological responses to psychosocial stress in women? Psychology of Sport and Exercise, 14(2), 266-274. https://doi.org/10.1016/j.psychsport.2012.11.003

Klaperski, S., von Dawans, B., Heinrichs, M., & Fuchs, R. (2014). Effects of a 12-week endurance training program on the physiological response to psychosocial stress in men: a randomized controlled trial. Journal of Behavioral Medicine, 37(6), 1118–1133. https://doi.org/10.1007/s10865-014-9562-9

Leis, O., & Lautenbach, F. (2020). Psychological and physiological stress in non-competitive and competitive esports settings: A systematic review. Psychology of Sport and Exercise, 51, 101738. https://doi.org/10.1016/j.psychsport.2020.101738

McEwen, B. S., & Morrison, J. H. (2013). The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79(1), 16–29. https://doi.org/10.1016/j.neuron.2013.06.028

Peng, W., Crouse, J. C., & Lin, J. H. (2013). Using active video games for physical activity promotion: a systematic review of the current state of research. Health Education & Behavior, 40(2), 171–192. https://doi.org/10.1177/1090198112444956

Penko, A. L., & Barkley, J. E. (2010). Motivation and physiologic responses of playing a physically interactive video game relative to a sedentary alternative in children. Annals of Behavioral Medicine, 39(2), 162–169. https://doi.org/10.1007/s12160-010-9164-x

Pires, N. F., Coelho-Júnior, H. J., Gambassi, B. B., de Faria, A. P. C., Ritter, A. M. V., de Andrade Barboza, C., Ferreira-Melo, S. E., Rodrigues, B., & Júnior, H. M. (2020). Combined Aerobic and Resistance Exercises Evokes Longer Reductions on Ambulatory Blood Pressure in Resistant Hypertension: A Randomized Crossover Trial. Cardiovascular Therapeutics, 2020, 8157858. https://doi.org/10.1155/2020/8157858

Poehlman, E. T., Dvorak, R. V., DeNino, W. F., Brochu, M., & Ades, P. A. (2000). Effects of resistance training and endurance training on insulin sensitivity in nonobese, young women: a controlled randomized trial. The Journal of Clinical Endocrinology and Metabolism, 85(7), 2463–2468. https://doi.org/10.1210/jcem.85.7.6692

Popoli, M., Yan, Z., McEwen, B. S., & Sanacora, G. (2011). The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nature reviews. Neuroscience, 13(1), 22–37. https://doi.org/10.1038/nrn3138

Przybylski, A. K., & Weinstein, N. (2017). A Large-Scale Test of the Goldilocks Hypothesis. Psychological Science, 28(2), 204–215. https://doi.org/10.1177/0956797616678438

Rimmele, U., Seiler, R., Marti, B., Wirtz, P. H., Ehlert, U., & Heinrichs, M. (2009). The level of physical activity affects adrenal and cardiovascular reactivity to psychosocial stress. Psychoneuroendocrinology, 34(2), 190–198. https://doi.org/10.1016/j.psyneuen.2008.08.023

Rimmele, U., Zellweger, B. C., Marti, B., Seiler, R., Mohiyeddini, C., Ehlert, U., & Heinrichs, M. (2007). Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men. Psychoneuroendocrinology, 32(6), 627–635. https://doi.org/10.1016/j.psyneuen.2007.04.005

Rolls E. T. (2015). Emotion and decision-making explained: response to commentators. Cortex, 62, 203–210. https://doi.org/10.1016/j.cortex.2014.04.010

Rolls, E. T., Critchley, H. D., Browning, A. S., & Inoue, K. (2006). Face-selective and auditory neurons in the primate orbitofrontal cortex. Experimental Brain Research, 170(1), 74–87. https://doi.org/10.1007/s00221-005-0191-y

Russell, G., & Lightman, S. (2019). The human stress response. Nature Reviews. Endocrinology, 15(9), 525–534. https://doi.org/10.1038/s41574-019-0228-0

Smyth, J., Zawadzki, M., & Gerin, W. (2013). Stress and disease: A structural and functional analysis. Social and Personality Psychology Compass, 7(4), 217-227. https://doi.org/10.1111/spc3.12020

Stajer, V., Vranes, M., & Ostojic, S. M. (2020). Correlation between biomarkers of creatine metabolism and serum indicators of peripheral muscle fatigue during exhaustive exercise in active men. Research in Sports Medicine, 28(1), 147–154. https://doi.org/10.1080/15438627.2018.1502185

Strahler, J., Doerr, J. M., Ditzen, B., Linnemann, A., Skoluda, N., & Nater, U. M. (2016). Physical activity buffers fatigue only under low chronic stress. Stress, 19(5), 535–541. https://doi.org/10.1080/10253890.2016.1192121

Sukartini, T., Mulyasari, P., & Wahyuni, E. D. (2020). The relationship of family support and patients’ knowledge with the treatment adherence of hypertension patients. Systematic Reviews in Pharmacy, 11(6), 1108-1110.

Thorp, A. A., Owen, N., Neuhaus, M., & Dunstan, D. W. (2011). Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996-2011. American Journal of Preventive Medicine, 41(2), 207–215. https://doi.org/10.1016/j.amepre.2011.05.004

Willis, L. H., Slentz, C. A., Bateman, L. A., Shields, A. T., Piner, L. W., Bales, C. W., Houmard, J. A., & Kraus, W. E. (2012). Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. Journal of Applied Physiology, 113(12), 1831–1837. https://doi.org/10.1152/japplphysiol.01370.2011

Yang, Z., Scott, C. A., Mao, C., Tang, J., & Farmer, A. J. (2014). Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis. Sports medicine, 44(4), 487–499. https://doi.org/10.1007/s40279-013-0128-8

Downloads
Published
2025-06-30
Section
Articles
License

Copyright (c) 2025 Faheem Butt, Uzma Rafi, Muhammad Amir Iqbal, Sehrish Yasmeen, Aasia Sharif, Farwa Liaqat (Author)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

How to Cite

Comparison of Serum Cortisol Levels in Athletes and Esports Athletes: Serum cortisol levels in athletes and esports athletes. (2025). Albus Scientia, 2025(1), 1-5. https://doi.org/10.56512/AS.2025.1.e250630

Most read articles by the same author(s)