Neuroinflammation: The hidden code through the Brain
- Authors
-
-
Maryam Latif
Institute of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, PakistanAuthor -
Sadia Noreen
Institute of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, PakistanAuthor -
Hooriya Fatima
Institute of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, PakistanAuthor -
Husna Ahmad
Institute of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, PakistanAuthor -
Nadeem Sheikh
Institute of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, PakistanAuthor
-
- Keywords:
- Astrocytes, Blood-Brain Barrier, Brain Aging, Cytokines, Microglia, Neurodegeneration, Neuroinflammation, Oxidative Stress
- Abstract
-
Neuroinflammation is a response reaction of the Central Nervous System (CNS) when triggered by a specific external stimulus. It is a positive and natural process of the body defending the vitals from infections. Excessive neuroinflammation leads to multiple pathological conditions, such as the common Alzheimer’s disease (AD) and Parkinson’s disease (PD). Neuroinflammation is triggered by Microglial and Astrocyte pathways of inflammation with the blood-brain barrier (BBB) changes, which could result in neuroinvasion, if it goes beyond the limit. Polarization responses influence the changes during neuroinflammation, and inflammatory mediator release disrupts the working of BBB in relation to astrocytes. Neuroinflammation is also triggered by aging when morphological changes in blood capillaries of the BBB arises. This review aims to encapsulate the key changes of microglial as well as astrocyte activation during neuroinflammation that may lead to aging related disease such as AD and PD with an intersection of Age-associated vasculopathy, suggesting the relation between BBB and aging.
- References
-
N., Melcer, T., Refaeli, R., Horn, H., Regev, L., Groysman, M., London, M., & Goshen, I. (2018). Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell, 174(1), 59–71.e14. https://doi.org/10.1016/j.cell.2018.05.002
Adamu, A., Li, S., Gao, F., & Xue, G. (2024). The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Frontiers in Aging Neuroscience, 16, 1347987. https://doi.org/10.3389/fnagi.2024.1347987
Allen, N. J., & Eroglu, C. (2017). Cell biology of Astrocyte-synapse interactions. Neuron, 96(3), 697–708. https://doi.org/10.1016/j.neuron.2017.09.056
Bony, B. A., Tarudji, A. W., Miller, H. A., Gowrikumar, S., Roy, S., Curtis, E. T., Gee, C. C., Vecchio, A., Dhawan, P., & Kievit, F. M. (2021). Claudin-1-targeted nanoparticles for delivery to aging-induced alterations in the blood-brain barrier. ACS nano, 15(11), 18520–18531. https://doi.org/10.1021/acsnano.1c08432
Brown, C. M., Mulcahey, T. A., Filipek, N. C., & Wise, P. M. (2010). Production of proinflammatory cytokines and chemokines during neuroinflammation: novel roles for estrogen receptors alpha and beta. Endocrinology, 151(10), 4916–4925. https://doi.org/10.1210/en.2010-0371
Ceafalan, L. C., Fertig, T. E., Gheorghe, T. C., Hinescu, M. E., Popescu, B. O., Pahnke, J., & Gherghiceanu, M. (2019). Age-related ultrastructural changes of the basement membrane in the mouse blood-brain barrier. Journal of Cellular & Molecular Medicine, 23(2), 819–827. https://doi.org/10.1111/jcmm.13980
Chen, C. Y., Chao, Y. M., Lin, H. F., Chen, C. J., Chen, C. S., Yang, J. L., Chan, J. Y. H., & Juo, S. H. (2020). miR-195 reduces age-related blood-brain barrier leakage caused by thrombospondin-1-mediated selective autophagy. Aging Cell, 19(11), e13236. https://doi.org/10.1111/acel.13236
Clarke, L. E., Liddelow, S. A., Chakraborty, C., Münch, A. E., Heiman, M., & Barres, B. A. (2018). Normal aging induces A1-like astrocyte reactivity. Proceedings of the National Academy of Sciences of the United States of America, 115(8), E1896–E1905. https://doi.org/10.1073/pnas.1800165115
Dickie, B. R., Boutin, H., Parker, G. J. M., & Parkes, L. M. (2021). Alzheimer's disease pathology is associated with earlier alterations to blood-brain barrier water permeability compared with healthy ageing in TgF344-AD rats. NMR in Biomedicine, 34(7), e4510. https://doi.org/10.1002/nbm.4510
Ding, R., Hase, Y., Ameen-Ali, K. E., Ndung'u, M., Stevenson, W., Barsby, J., Gourlay, R., Akinyemi, T., Akinyemi, R., Uemura, M. T., Polvikoski, T., Mukaetova-Ladinska, E., Ihara, M., & Kalaria, R. N. (2020). Loss of capillary pericytes and the blood-brain barrier in white matter in poststroke and vascular dementias and Alzheimer's disease. Brain Pathology, 30(6), 1087–1101. https://doi.org/10.1111/bpa.12888
Dong X. (2018). Current strategies for brain drug delivery. Theranostics, 8(6), 1481–1493. https://doi.org/10.7150/thno.21254
Dos Santos, S. E., Medeiros, M., Porfirio, J., Tavares, W., Pessôa, L., Grinberg, L., Leite, R. E. P., Ferretti-Rebustini, R. E. L., Suemoto, C. K., Filho, W. J., Noctor, S. C., Sherwood, C. C., Kaas, J. H., Manger, P. R., & Herculano-Houzel, S. (2020). Similar microglial cell densities across brain structures and mammalian species: implications for brain tissue function. The Journal of neuroscience, 40(24), 4622–4643. https://doi.org/10.1523/JNEUROSCI.2339-19.2020
Ek Olofsson, H., & Englund, E. (2019). A cortical microvascular structure in vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls: a sign of angiogenesis due to brain ischaemia?. Neuropathology and Applied Neurobiology, 45(6), 557–569. https://doi.org/10.1111/nan.12552
Fan, H., Zhang, M., Wen, J., Wang, S., Yuan, M., Sun, H., Shu, L., Yang, X., Pu, Y., & Cai, Z. (2024). Microglia in brain aging: An overview of recent basic science and clinical research developments. Journal of Biomedical Research, 38(2), 122–136. https://doi.org/10.7555/JBR.37.20220220
Fan, Y. Y., & Huo, J. (2021). A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils?. Neurochemistry International, 148, 105080. https://doi.org/10.1016/j.neuint.2021.105080
Farhangian, M., Azarafrouz, F., Chavoshinezhad, S., & Dargahi, L. (2023). Intranasal interferon-beta alleviates anxiety and depressive-like behaviors by modulating microglia polarization in an Alzheimer's disease model. Neuroscience Letters, 792, 136968. https://doi.org/10.1016/j.neulet.2022.136968
Fornari Laurindo, L., Aparecido Dias, J., Cressoni Araújo, A., Torres Pomini, K., Machado Galhardi, C., Rucco Penteado Detregiachi, C., Santos de Argollo Haber, L., Donizeti Roque, D., Dib Bechara, M., Vialogo Marques de Castro, M., de Souza Bastos Mazuqueli Pereira, E., José Tofano, R., Jasmin Santos German Borgo, I., & Maria Barbalho, S. (2024). Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Frontiers in Immunology, 14, 1305933. https://doi.org/10.3389/fimmu.2023.1305933
Goldmann, T., Wieghofer, P., Jordão, M. J., Prutek, F., Hagemeyer, N., Frenzel, K., Amann, L., Staszewski, O., Kierdorf, K., Krueger, M., Locatelli, G., Hochgerner, H., Zeiser, R., Epelman, S., Geissmann, F., Priller, J., Rossi, F. M., Bechmann, I., Kerschensteiner, M., Linnarsson, S., … Prinz, M. (2016). Origin, fate and dynamics of macrophages at central nervous system interfaces. Nature Immunology, 17(7), 797–805. https://doi.org/10.1038/ni.3423
Guzman-Martinez, L., Maccioni, R. B., Andrade, V., Navarrete, L. P., Pastor, M. G., & Ramos-Escobar, N. (2019). Neuroinflammation as a common feature of neurodegenerative disorders. Frontiers in Pharmacology, 10, 1008. https://doi.org/10.3389/fphar.2019.01008
Habib, N., McCabe, C., Medina, S., Varshavsky, M., Kitsberg, D., Dvir-Szternfeld, R., Green, G., Dionne, D., Nguyen, L., Marshall, J. L., Chen, F., Zhang, F., Kaplan, T., Regev, A., & Schwartz, M. (2020). Disease-associated astrocytes in Alzheimer's disease and aging. Nature Neuroscience, 23(6), 701–706. https://doi.org/10.1038/s41593-020-0624-8
Hamilton J. A. (2020). GM-CSF in inflammation. The Journal of Experimental Medicine, 217(1), e20190945. https://doi.org/10.1084/jem.20190945
Hartmann, D. A., Coelho-Santos, V., & Shih, A. Y. (2022). Pericyte control of blood flow across microvascular zones in the central nervous system. Annual Review of Physiology, 84, 331–354. https://doi.org/10.1146/annurev-physiol-061121-040127
Iadecola C. (2017). The Neurovascular Unit coming of age: a journey through neurovascular coupling in health and disease. Neuron, 96(1), 17–42. https://doi.org/10.1016/j.neuron.2017.07.030
Joost, E., Jordão, M. J. C., Mages, B., Prinz, M., Bechmann, I., & Krueger, M. (2019). Microglia contribute to the glia limitans around arteries, capillaries and veins under physiological conditions, in a model of neuroinflammation and in human brain tissue. Brain Structure & Function, 224(3), 1301–1314. https://doi.org/10.1007/s00429-019-01834-8
Kalaria, R. N., & Hase, Y. (2019). Neurovascular ageing and age-related diseases. Sub-cellular Biochemistry, 91, 477–499. https://doi.org/10.1007/978-981-13-3681-2_17
Kiguchi, N., Kobayashi, Y., & Kishioka, S. (2012). Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Current Opinion in Pharmacology, 12(1), 55–61. https://doi.org/10.1016/j.coph.2011.10.007
Kim, J. H., Michiko, N., Choi, I. S., Kim, Y., Jeong, J. Y., Lee, M. G., Jang, I. S., & Suk, K. (2024). Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biology, 22(7), e3002687. https://doi.org/10.1371/journal.pbio.3002687
Kumar, V., & Stewart Iv, J. H. (2024). Pattern-recognition receptors and immunometabolic reprogramming: ؤhat we know and what to explore. Journal of Innate Immunity, 16(1), 295–323. https://doi.org/10.1159/000539278
Leng, F., & Edison, P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?. Nature reviews. Neurology, 17(3), 157–172. https://doi.org/10.1038/s41582-020-00435-y
Li, T., Li, D., Wei, Q., Shi, M., Xiang, J., Gao, R., Chen, C., & Xu, Z. X. (2023). Dissecting the neurovascular unit in physiology and Alzheimer's disease: Functions, imaging tools and genetic mouse models. Neurobiology of Disease, 181, 106114. https://doi.org/10.1016/j.nbd.2023.106114
Lu, L., Lu, T., Shen, J., Lv, X., Wei, W., Wang, H., & Xue, X. (2021). Alisol A 24-acetate protects against brain microvascular endothelial cells injury through inhibiting miR-92a-3p/tight junctions axis. Aging, 13(11), 15353–15365. https://doi.org/10.18632/aging.203094
Luchena, C., Zuazo-Ibarra, J., Valero, J., Matute, C., Alberdi, E., & Capetillo-Zarate, E. (2022). A neuron, microglia, and astrocyte triple co-culture model to study Alzheimer's disease. Frontiers in Aging Neuroscience, 14, 844534. https://doi.org/10.3389/fnagi.2022.844534
Ma, Y., Wang, J., Guo, S., Meng, Z., Ren, Y., Xie, Y., & Wang, M. (2023). Cytokine/chemokine levels in the CSF and serum of anti-NMDAR encephalitis: A systematic review and meta-analysis. Frontiers in Immunology, 13, 1064007. https://doi.org/10.3389/fimmu.2022.1064007
Mahaling, B., Low, S. W. Y., Beck, M., Kumar, D., Ahmed, S., Connor, T. B., Ahmad, B., & Chaurasia, S. S. (2022). Damage-associated molecular patterns (DAMPs) in retinal disorders. International Journal of Molecular Sciences, 23(5), 2591. https://doi.org/10.3390/ijms23052591
Mattson, M. P., & Arumugam, T. V. (2018). Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metabolism, 27(6), 1176–1199. https://doi.org/10.1016/j.cmet.2018.05.011
Maurya, S. K., Bhattacharya, N., Mishra, S., Bhattacharya, A., Banerjee, P., Senapati, S., & Mishra, R. (2021). Microglia specific drug targeting using natural products for the regulation of redox imbalance in neurodegeneration. Frontiers in Pharmacology, 12, 654489. https://doi.org/10.3389/fphar.2021.654489
Mrdjen, D., Pavlovic, A., Hartmann, F. J., Schreiner, B., Utz, S. G., Leung, B. P., Lelios, I., Heppner, F. L., Kipnis, J., Merkler, D., Greter, M., & Becher, B. (2018). High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity, 48(2), 380–395.e6. https://doi.org/10.1016/j.immuni.2018.01.011
Nikolakopoulou, P., Rauti, R., Voulgaris, D., Shlomy, I., Maoz, B. M., & Herland, A. (2020). Recent progress in translational engineered in vitro models of the central nervous system. Brain, 143(11), 3181–3213. https://doi.org/10.1093/brain/awaa268
Parodi-Rullán, R. M., Javadov, S., & Fossati, S. (2021). Dissecting the crosstalk between endothelial mitochondrial damage, vascular inflammation, and neurodegeneration in cerebral amyloid angiopathy and Alzheimer’s disease. Cells, 10(11), 2903. https://doi.org/10.3390/cells10112903
Poskanzer, K. E., & Molofsky, A. V. (2018). Dynamism of an Astrocyte In Vivo: Perspectives on Identity and Function. Annual Review of Physiology, 80, 143–157. https://doi.org/10.1146/annurev-physiol-021317-121125
Preman, P., Alfonso-Triguero, M., Alberdi, E., Verkhratsky, A., & Arranz, A. M. (2021). Astrocytes in Alzheimer's disease: pathological significance and molecular pathways. Cells, 10(3), 540. https://doi.org/10.3390/cells10030540
Rama Rao, K. V., & Kielian, T. (2015). Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. Clinical & Experimental Neuroimmunology, 6(3), 245–263. https://doi.org/10.1111/cen3.12237
Ramesh, G., MacLean, A. G., & Philipp, M. T. (2013). Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators of Inflammation, 2013, 480739. https://doi.org/10.1155/2013/480739
Reed, M. J., Damodarasamy, M., & Banks, W. A. (2019). The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer's disease. Tissue Barriers, 7(4), 1651157. https://doi.org/10.1080/21688370.2019.1651157
Ronaldson, P. T., & Davis, T. P. (2020). Regulation of blood-brain barrier integrity by microglia in health and disease: A therapeutic opportunity. Journal of Cerebral Blood Flow and Metabolism, 40(1_suppl), S6–S24. https://doi.org/10.1177/0271678X20951995
Rothhammer, V., Borucki, D. M., Tjon, E. C., Takenaka, M. C., Chao, C. C., Ardura-Fabregat, A., de Lima, K. A., Gutiérrez-Vázquez, C., Hewson, P., Staszewski, O., Blain, M., Healy, L., Neziraj, T., Borio, M., Wheeler, M., Dragin, L. L., Laplaud, D. A., Antel, J., Alvarez, J. I., Prinz, M., … Quintana, F. J. (2018). Microglial control of astrocytes in response to microbial metabolites. Nature, 557(7707), 724–728. https://doi.org/10.1038/s41586-018-0119-x
Sharma, R., Zamani, A., Dill, L. K., Sun, M., Chu, E., Robinson, M. J., O'Brien, T. J., Shultz, S. R., & Semple, B. D. (2021). A systemic immune challenge to model hospital-acquired infections independently regulates immune responses after pediatric traumatic brain injury. Journal of Neuroinflammation, 18(1), 72. https://doi.org/10.1186/s12974-021-02114-1
Shi, S. X., Li, Y. J., Shi, K., Wood, K., Ducruet, A. F., & Liu, Q. (2020). IL (Interleukin)-15 Bridges Astrocyte-Microglia Crosstalk and Exacerbates Brain Injury Following Intracerebral Hemorrhage. Stroke, 51(3), 967–974. https://doi.org/10.1161/STROKEAHA.119.028638
Singh D. (2022). Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer's disease. Journal of Neuroinflammation, 19(1), 206. https://doi.org/10.1186/s12974-022-02565-0
Solleiro-Villavicencio, H., & Rivas-Arancibia, S. (2018). Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 12, 114. https://doi.org/10.3389/fncel.2018.00114
Stamatovic, S. M., Martinez-Revollar, G., Hu, A., Choi, J., Keep, R. F., & Andjelkovic, A. V. (2019). Decline in Sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging. Neurobiology of Disease, 126, 105–116. https://doi.org/10.1016/j.nbd.2018.09.006
Tang, Y., & Le, W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology, 53(2), 1181–1194. https://doi.org/10.1007/s12035-014-9070-5
Tong, B. C., Wu, A. J., Li, M., & Cheung, K. H. (2018). Calcium signaling in Alzheimer's disease & therapies. Biochimica et Biophysica Acta. Molecular Cell Research, 1865(11 Pt B), 1745–1760. https://doi.org/10.1016/j.bbamcr.2018.07.018
Vainchtein, I. D., Chin, G., Cho, F. S., Kelley, K. W., Miller, J. G., Chien, E. C., Liddelow, S. A., Nguyen, P. T., Nakao-Inoue, H., Dorman, L. C., Akil, O., Joshita, S., Barres, B. A., Paz, J. T., Molofsky, A. B., & Molofsky, A. V. (2018). Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science, 359(6381), 1269–1273. https://doi.org/10.1126/science.aal3589
Vainchtein, I. D., & Molofsky, A. V. (2020). Astrocytes and Microglia: in sickness and in health. Trends in Neurosciences, 43(3), 144–154. https://doi.org/10.1016/j.tins.2020.01.003
Wang, Q., Yao, H., Liu, W., Ya, B., Cheng, H., Xing, Z., & Wu, Y. (2021). Microglia polarization in Alzheimer's disease: mechanisms and a potential therapeutic target. Frontiers in Aging Neuroscience, 13, 772717. https://doi.org/10.3389/fnagi.2021.772717
Wendimu, M. Y., & Hooks, S. B. (2022). Microglia phenotypes in aging and neurodegenerative diseases. Cells, 11(13), 2091. https://doi.org/10.3390/cells11132091
Wolf, S. A., Boddeke, H. W., & Kettenmann, H. (2017). Microglia in physiology and disease. Annual Review of Physiology, 79, 619–643. https://doi.org/10.1146/annurev-physiol-022516-034406
Wu, C., Yang, L., Feng, S., Zhu, L., Yang, L., Liu, T. C., & Duan, R. (2022). Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflammation and Regeneration, 42(1), 31. https://doi.org/10.1186/s41232-022-00216-8
Wu, C., Zou, P., Feng, S., Zhu, L., Li, F., Liu, T. C., Duan, R., & Yang, L. (2023). Molecular Hydrogen: An emerging therapeutic medical gas for brain disorders. Molecular Neurobiology, 60(4), 1749–1765. https://doi.org/10.1007/s12035-022-03175-w
Wu, L., Zhang, X., & Zhao, L. (2018). Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: implications for Alzheimer's disease risk reduction and early intervention. The Journal of neuroscience, 38(30), 6665–6681. https://doi.org/10.1523/JNEUROSCI.2262-17.2018
Yang, L., Tucker, D., Dong, Y., Wu, C., Lu, Y., Li, Y., Zhang, J., Liu, T. C., & Zhang, Q. (2018). Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells. Experimental Neurology, 299(Pt A), 86–96. https://doi.org/10.1016/j.expneurol.2017.10.013
Yang, L., Wu, C., Li, Y., Dong, Y., Wu, C. Y., Lee, R. H., Brann, D. W., Lin, H. W., & Zhang, Q. (2022). Long-term exercise pre-training attenuates Alzheimer's disease-related pathology in a transgenic rat model of Alzheimer's disease. GeroScience, 44(3), 1457–1477. https://doi.org/10.1007/s11357-022-00534-2
Yang, L., Wu, C., Parker, E., Li, Y., Dong, Y., Tucker, L., Brann, D. W., Lin, H. W., & Zhang, Q. (2022). Non-invasive photobiomodulation treatment in an Alzheimer Disease-like transgenic rat model. Theranostics, 12(5), 2205–2231. https://doi.org/10.7150/thno.70756
Yang, L., Zhou, Y., Jia, H., Qi, Y., Tu, S., & Shao, A. (2020). Affective immunology: the crosstalk between microglia and astrocytes plays key role?. Frontiers in Immunology, 11, 1818. https://doi.org/10.3389/fimmu.2020.01818
Yoshizaki, S., Tamaru, T., Hara, M., Kijima, K., Tanaka, M., Konno, D. J., Matsumoto, Y., Nakashima, Y., & Okada, S. (2021). Microglial inflammation after chronic spinal cord injury is enhanced by reactive astrocytes via the fibronectin/β1 integrin pathway. Journal of Neuroinflammation, 18(1), 12. https://doi.org/10.1186/s12974-020-02059-x
Zhao, L., Li, Z., Vong, J. S. L., Chen, X., Lai, H. M., Yan, L. Y. C., Huang, J., Sy, S. K. H., Tian, X., Huang, Y., Chan, H. Y. E., So, H. C., Ng, W. L., Tang, Y., Lin, W. J., Mok, V. C. T., & Ko, H. (2020). Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nature Communications, 11(1), 4413. https://doi.org/10.1038/s41467-020-18249-3
- Downloads
- Published
- 2025-05-08
- Issue
- Vol. 2025 No. 1
- Section
- Review Articles
- License
-

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Most read articles by the same author(s)
- Zaira Ahmad, Sajid Rashid Ahmad, Muddasir Hassan Abbasi, Nadeem Sheikh, Geometric Morphometrics Analysis of Inter-Population Wing Shape Variations in Bats , Albus Scientia: Vol. 2022 No. 1
- Tayyaba Saleem, Hafsa Maqbool, Saira Kainat Suqaina, Mavra Irfan, Raana Zafar, Nadeem Sheikh, A Synonymous Variant, GABRG2 rs211037 Might Be a Predictive Genetic Marker of migraine: A Case Control Study from Pakistan , Albus Scientia: Vol. 2022 No. 1
- Maira Awan, Kaleem Maqsood, Shaaf Ahmad, Husna Ahmad, Muhammad Amir Iqbal, Nabila Roohi, Serum Lipid Variation in Patients with Dengue Virus Infection and Associated Risks of Cardio Vascular Disorder , Albus Scientia: Vol. 2022 No. 2
- Naila Hameed, Tasleem Akhtar, Nadeem Sheikh, BPA; An Endocrine Disruptor Induced Biochemical Changes and Histopathological Damage in the Kidneys of Rats (Rattus norvegicus) , Albus Scientia: Vol. 2023 No. 1
- Muhammad Babar Khawar, Muddasir Hassan Abbasi, Nadeem Sheikh, Mehwish Riaz, Mussarat Rafiq, Adil Farooq, Zaira Ahmad, Sana Fatima, Hafiza Nabeela Amaan, Second Wave Scenario of COVID-19 in Pakistan and Combating Strategies , Albus Scientia: Vol. 2022 No. 1
- Sundas Akram, Amaila Akmal, Shaaf Ahmad, Husna Ahmad, Nabila Roohi, Clinicopathological Patterns and Biochemical Markers in Serum of Uterine Leiomyoma Patients , Albus Scientia: Vol. 2022 No. 2
- Rabia Mehmood, Nadeem Sheikh, Metal Dust Exposure Caused Changes in Blood Indices and Serum Proteins , Albus Scientia: Vol. 2022 No. 1
Similar Articles
- Hira Ashfaq, Asma Rashid Khan, Muddasir Hassan Abbasi, Asif Mahmood Qureshi, Mohammad Waqar, Kainat Bilal, Khansa Bajwa, Alpha Lipoic Acid Ameliorates the Artificial Sugar Induced Injury to the Female Reproductive Organs of Mice , Albus Scientia: Vol. 2023 No. 1
- Zari Salahuddin, Muhammad Usman Ali Khan, Tasleem Akhtar, Psoriasis: An Overview of its Pathogenesis and Available Treatment Modalities , Albus Scientia: Vol. 2022 No. 2
- Faheem Butt, Uzma Rafi, Muhammad Amir Iqbal, Sehrish Yasmeen, Aasia Sharif, Farwa Liaqat, Comparison of Serum Cortisol Levels in Athletes and Esports Athletes , Albus Scientia: Vol. 2025 No. 1
- Rabia Mehmood, Nadeem Sheikh, Metal Dust Exposure Caused Changes in Blood Indices and Serum Proteins , Albus Scientia: Vol. 2022 No. 1
- Maira Awan, Kaleem Maqsood, Shaaf Ahmad, Husna Ahmad, Muhammad Amir Iqbal, Nabila Roohi, Serum Lipid Variation in Patients with Dengue Virus Infection and Associated Risks of Cardio Vascular Disorder , Albus Scientia: Vol. 2022 No. 2
- Sundas Akram, Amaila Akmal, Shaaf Ahmad, Husna Ahmad, Nabila Roohi, Clinicopathological Patterns and Biochemical Markers in Serum of Uterine Leiomyoma Patients , Albus Scientia: Vol. 2022 No. 2
- Tayyaba Saleem, Hafsa Maqbool, Saira Kainat Suqaina, Mavra Irfan, Raana Zafar, Nadeem Sheikh, A Synonymous Variant, GABRG2 rs211037 Might Be a Predictive Genetic Marker of migraine: A Case Control Study from Pakistan , Albus Scientia: Vol. 2022 No. 1
- Naila Hameed, Tasleem Akhtar, Nadeem Sheikh, BPA; An Endocrine Disruptor Induced Biochemical Changes and Histopathological Damage in the Kidneys of Rats (Rattus norvegicus) , Albus Scientia: Vol. 2023 No. 1
- Sidra Javed, Isbah Ashfaq, Mehak Shahid, Asima Tayyeb, Unraveling Chemoresistance Mechanisms in Hepatocellular Carcinoma , Albus Scientia: Vol. 2025 No. 1
You may also start an advanced similarity search for this article.
